Near-Zero Power Radio Frequency Receivers

Troy Olsson, Ph.D.
Defense Advanced Research Projects Agency
Radoslav Bogoslovov, Ph.D.
ECS Federal
Christal Gordon, Ph.D.
Booz Allen Hamilton

IEEE RFID 2017
May 11, 2017

Distribution Statement "A" Approved for Public Release, Distribution Unlimited
N-ZERO Vision: Persistent Sensing for the DoD

N-ZERO seeks to greatly extend mission capabilities and lifetime at reduced cost

Geophone recording of activity followed by RF transmission
N-ZERO Vision: OFF but ALERT!

N-ZERO passive sensor wake-up:
- Continuous operation and near-zero power processing
- Persistent sensing with greatly extended lifetime and reduced cost
- Multiple sensing modalities with sensor fusion

Devices are OFF (zero power consumption) yet continually ALERT!

Distribution Statement "A" Approved for Public Release, Distribution Unlimited
Smart Cities Applications

- Unattended sensors
- Communications nodes
- IoT devices

Perimeter Monitoring

Critical Infrastructure Protection

Threat Detection in Urban Areas

Environment Monitoring

Artist’s Concept
Current State-of-the-Art (SOA): Awaiting Activity Constrains Mission Life

- Unattended sensors
- Power draw waiting for information (wake-up limited)
- Power draw from processing information (activity limited)

Acoustic signature @ 3 m standoff

Distribution Statement "A" Approved for Public Release, Distribution Unlimited
Current SOA: Awaiting Activity Constrains Mission Life

Unattended Sensors and Radios

Distribution Statement "A" Approved for Public Release, Distribution Unlimited
Staying ALERT requires ACTIVE POWER!

Current SOA: Awaiting Activity Constrains Mission Life

Distribution Statement "A" Approved for Public Release, Distribution Unlimited
The N-ZERO Advantage

Unattended Ground Sensors

- Analog Wake-Up Always Consumes Power
- Recording 1.4 Min/Day
- ~ 1 Month Device Lifetime from Coin Cell
- Savings From N-ZERO Passive Wake-up
- ~ 5 Year Device Lifetime from Coin Cell

- Analog Wake-Up Always Consumes Power
- Recording 1.4 Min/Day
- Example Microsystem
- Example Microsystem w/ N-ZERO

UGS RF Transceivers

- Periodic Wake-up and Synchronization
- Transmit Data 6 Mb/Day
- Receive Data 12 MB/Day
- ~ 1 Month Device Lifetime
- Example Radio
- Example Radio w/ N-ZERO

- Transmit Data 6 Mb/Day
- Receive Data 12 MB/Day
- ~ 24 Month Device Lifetime

- Savings From N-ZERO Passive Wake-Up

- OFF but constantly ALERT
- Wake-up and synchronization do not drain lifetime

• Staying alert requires active power
• Wake-up and synchronization consume > 95% of battery life for sparse signals

Distribution Statement "A" Approved for Public Release, Distribution Unlimited
N-ZERO Concept

- **N-ZERO senses** the environment 100% of the time at near-zero power
- N-ZERO uses energy in the signals to perform **signal processing** to detect information while rejecting noise and interference
- **Detection** of an event triggers activation of the COTS module for further processing and follow-up action

N-ZERO

- **N-ZERO RF Sensor**
- **N-ZERO Physical Sensor**
- **RF Wake-up**
- **Sensor Wake-up**

Not N-ZERO: COTS Wireless Unattended Ground Sensor

- **COTS Radio Response**
- **COTS Sensor Response**
- **COTS battery**

N-ZERO does not replace COTS functionality. N-ZERO will reduce COTS “on” time, thereby dramatically increasing the sensor’s useful lifetime.

Distribution Statement "A" Approved for Public Release, Distribution Unlimited
Outline

- Sensor Examples
 - Acoustic
 - Infrared
 - Chemical

- Near-Zero Power Receivers
 - Challenge
 - Architecture
 - Components
 - Transformers
 - Rectifiers
 - Receiver demonstrations
 - Measured performance vs. state-of-the-art
Acoustic Sensor Wake-up

Distribution Statement "A" Approved for Public Release, Distribution Unlimited

Wake-up to generator and truck at > 5m with 12 nW of power consumption
Programmable Microphone Wake-up

Distribution Statement "A" Approved for Public Release, Distribution Unlimited
Zero Power IR Spectrum Sensor

Concept

Operation Description

IR spectrometer with zero standby power

Distribution Statement "A" Approved for Public Release, Distribution Unlimited
Zero Power IR Spectrum Sensor

SEM Image

Plasmonic Absorber Response

Switch triggered by 6 μm IR

Rejects 4 μm IR

IR spectrometer with zero standby power

Distribution Statement "A" Approved for Public Release, Distribution Unlimited
Passive detection of chemical warfare agents with zero power

Chemical Percolation Wake-Up

1,5 Diaminopentane Target

Exposure sensor to chemical in petri dish

Remove sensor from chemical gas

<table>
<thead>
<tr>
<th>Metric</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF level at sensor input</td>
<td>≤ -60 dBm</td>
<td>≤ -80 dBm</td>
<td>≤ -100 dBm</td>
</tr>
<tr>
<td>RF frequency limits</td>
<td>0.05-1 GHz</td>
<td>0.05-1 GHz</td>
<td>0.05-1 GHz</td>
</tr>
<tr>
<td>Received energy required for signature detection</td>
<td>≤ 30 pJ</td>
<td>≤ 300 fJ</td>
<td>≤ 3 fJ</td>
</tr>
<tr>
<td>Probability of detection</td>
<td></td>
<td>95%</td>
<td></td>
</tr>
<tr>
<td>False alarm rate</td>
<td>< 1 per hour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environment</td>
<td>low interference background</td>
<td>high interference background</td>
<td>high interference background</td>
</tr>
</tbody>
</table>
The Challenge of Near-Zero Power RF Wake-Up

Traditional Rx
High Power (mW)

Traditional Wake-Up
Low Sensitivity (-30 dBm)

N-ZERO Wake-Up
< 10 nW
< -60 to -100 dBm
Efficiency Limited by V_T

Antenna (50 Ω) Referred Peak Voltage at Various Power Levels
- -60 dBm = 316 μV
- -80 dBm = 31.6 μV
- -100 dBm = 3.16 μV

RF Approaches

Passive Voltage Gain Approaches
New materials offer much larger figure of merit (FOM) and potential for higher voltage gain.

\[K^2 = 19\% \]
\[Q = 2200 \]
\[\text{FOM} = 420! \]

High FOM Device Can Lead to New Levels of Passive Voltage Gain

Achievable Voltage Gain vs. Coupling$^2 \times$ Quality Factor (FOM = K^2Q)

- Demonstrated transformer gain
- Based on measured device FOM

- 1 GHz Si-MEMS
- AIN MEMS
- LiNbO$_3$ SAW
- 2014 LiNbO$_3$ MEMS

Distribution Statement "A" Approved for Public Release, Distribution Unlimited
High FOM µResonator

AIN cross-sectional Lamé-mode Resonators

\[k_t^2 = 6.2\% \]

\[Q_{\text{load}} = 1750 \]

\[C_0 = 26.3 \text{ fF} \]

\[R_m = 210 \Omega \]

FOM ~ 108!

High Gain Acoustic Transformer

FOM = 40
Voltage gain ~ 40 at 920 GHz

Distribution Statement "A" Approved for Public Release, Distribution Unlimited
MEMS Chirp Compressor

LC Transformer Filter

V\text{gain} = 17.9 \text{ V/V}
Antenna (50 Ω) referred peak voltage at various power levels
- -60 dBm = 316 μV
- -80 dBm = 31.6 μV
- -100 dBm = 3.16 μV
Low Voltage Rectifier Approaches
Micromechanical Switches as Efficient Rectifiers and Quantizers

- Displacement ~ V^2
- Very low thresholds achievable
- Steep subthreshold swing < 1mV/dec demonstrated
- Challenge is achieving small gaps and compliant structures for low threshold voltage

Micromechanical Rectifiers and Quantizers

300 µV threshold MEMS switch

Envelope Detector as a Rectifier

Benefit:
Active ED has high input impedance to support high RF gain

\[2^{\text{nd}}\text{ order } g_m \text{ non-linearity realizes the ED squaring-function}\]
Envelop Detector Implementation

Active-Inductor ED Bias

0.4V

V_B

Vantage ED bias improves SNR by 3dB & 25dB over diode load & resistor load, respectively

Benefit:
- high R_{out}
- high gain
- high SNR

Active-L ED bias improves SNR by 3dB & 25dB over diode load & resistor load, respectively
Why Low Voltage Rectifiers

Antenna (50 Ω) referred peak voltage at various power levels
- -60 dBm = 316 µV
- -80 dBm = 31.6 µV
- -100 dBm = 3.16 µV
Micromechanical Frequency-Selective N-ZERO Receiver

Demonstrated sensitivity:
-62 dBm @ 20-kHz

All mechanical zero-power receiver

Zero Quiescent Power Low Frequency Mechanical Receiver, Transducers 2015

Distribution Statement "A" Approved for Public Release, Distribution Unlimited
N-ZERO VHF Wake-up Receiver

Lowest powered effort for N-ZERO wake-up receiver

RF Sensing - TA-1A

www.eecs.umich.edu/wics/low_power_radio_survey.html

Remote wake-up a circuit **without drawing stand-by power**

Current Results

<table>
<thead>
<tr>
<th></th>
<th>Phase I Goal</th>
<th>UCSD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Consumption [nW]</td>
<td>≤10</td>
<td>4.5</td>
</tr>
<tr>
<td>Sensitivity [dBm]</td>
<td>≤-60</td>
<td>-69</td>
</tr>
<tr>
<td>Frequency [MHz]</td>
<td>50 - 1000</td>
<td>114</td>
</tr>
<tr>
<td>False Alarm Rates [#/hour]</td>
<td>≤1</td>
<td>0.64</td>
</tr>
<tr>
<td>Probability of Detection [%]</td>
<td>95</td>
<td>≥95</td>
</tr>
<tr>
<td>Transformer</td>
<td>Performer Defined</td>
<td>LC</td>
</tr>
<tr>
<td>Rectifier</td>
<td>Performer Defined</td>
<td>CMOS</td>
</tr>
</tbody>
</table>
N-ZERO Zero Power RF Wake-Up Impact

Networked sensors

~ 1 Month Device Lifetime

~ 24 Month Device Lifetime

N-ZERO RF wake-up greatly extends networked sensor lifetime

Transmission Data 6 MB/Day

Receive Data 12 MB/Day
Enabling Indefinite Operational Lifetimes

Temperature

Electronics/Actuators

Storage

Energy Scavenging Technologies

Thermoelectric ~90 uW/cm² (delta = 77-98 deg F)

Vibration ~100 uW/cm² (typ. inside a moving car)

Solar ~100 uW to 30 mW/cm² (office to direct sun)

N-ZERO – smart sensors and radios that can operate from harvested power

Distribution Statement "A" Approved for Public Release, Distribution Unlimited

Enabling Indefinite Operational Lifetimes

https://www.slideshare.net/Funk98/energy-harvesting-for-iot

[Image of solar power technology]

Solar power technology for small sensors and radios.
• Unattended sensors with unlimited lifetimes

• Expanded short range RFID with -70dBm sensitivity

• One trillion devices that do not require charging or battery changes
www.darpa.mil